Leveraging Synthetic Discourse Data via Multi-task Learning for Implicit Discourse Relation Recognition

نویسندگان

  • Man Lan
  • Yu Xu
  • Zheng-Yu Niu
چکیده

To overcome the shortage of labeled data for implicit discourse relation recognition, previous works attempted to automatically generate training data by removing explicit discourse connectives from sentences and then built models on these synthetic implicit examples. However, a previous study (Sporleder and Lascarides, 2008) showed that models trained on these synthetic data do not generalize very well to natural (i.e. genuine) implicit discourse data. In this work we revisit this issue and present a multi-task learning based system which can effectively use synthetic data for implicit discourse relation recognition. Results on PDTB data show that under the multi-task learning framework our models with the use of the prediction of explicit discourse connectives as auxiliary learning tasks, can achieve an averaged F1 improvement of 5.86% over baseline models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilingually-constrained Synthetic Data for Implicit Discourse Relation Recognition

To alleviate the shortage of labeled data, we propose to use bilingually-constrained synthetic implicit data for implicit discourse relation recognition. These data are extracted from a bilingual sentence-aligned corpus according to the implicit/explicit mismatch between different languages. Incorporating these data via a multi-task neural network model achieves significant improvements over ba...

متن کامل

Implicit Discourse Relation Classification via Multi-Task Neural Networks

Without discourse connectives, classifying implicit discourse relations is a challenging task and a bottleneck for building a practical discourse parser. Previous research usually makes use of one kind of discourse framework such as PDTB or RST to improve the classification performance on discourse relations. Actually, under different discourse annotation frameworks, there exist multiple corpor...

متن کامل

Leveraging Hierarchical Deep Semantics to Classify Implicit Discourse Relations via Mutual Learning Method

This paper presents a mutual learning method using hierarchical deep semantics for the classification of implicit discourse relations in English. With the absence of explicit discourse markers, traditional discourse techniques mainly concentrate on discrete linguistic features in this task, which always leads to data sparse problem. To relieve this problem, we propose a mutual learning neural m...

متن کامل

Recognizing Implicit Discourse Relations through Abductive Reasoning with Large-scale Lexical Knowledge

Discourse relation recognition is the task of identifying the semantic relationships between textual units. Conventional approaches to discourse relation recognition exploit surface information and syntactic information as machine learning features. However, the performance of these models is severely limited for implicit discourse relation recognition. In this paper, we propose an abductive th...

متن کامل

Implicit Discourse Relation Recognition by Selecting Typical Training Examples

Implicit discourse relation recognition is a challenging task in the natural language processing field, but important to many applications such as question answering, summarizat ion and so on. Previous research used either art ificially created implicit discourse relat ions with connectives removed from explicit relations or annotated implicit relat ions as training data to detect the possible ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013